Abstract

Water is one of the most important natural resources of life. While it is considerably cheap and vastly available currently, except for extreme locations, this is not guaranteed in the future. Being provident with water has multitude of advantages in both short and long term. Using less clean water not only brings immediate financial benefits, it simultaneously reduces wastewater production, related treatment costs, and the impact on the environment. Reducing the water footprint of a batch system is not a trivial task, as water sources and sinks need to be matched not only in quantity and quality, but in time as well. In this paper, the S-graph scheduling framework is extended to address simultaneous scheduling and water minimization in batch processing systems. The proposed approach tackles truly batch processes with a single contaminant, and allows only a single water source to be reused for each sink. The presented algorithm and S-graph extension have been implemented and tested on various case studies from the literature. The results of this paper provide an opportunity for further extensions to address a wider range of problems with multiple contaminants, semi-continuous behavior, cyclic operations, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call