Abstract
Bacterial contamination of produce is a concern in indoor farming due to close plant spacing, recycling irrigation, warm temperatures, and high relative humidity during production. Cultivars that inherently resist contamination and photo-sanitization using ultraviolet (UV) radiation during the production phase can reduce bacterial contamination. However, there is limited information to support their use in indoor farming. Lettuce (Lactuca sativa) cultivars with varying plant architectures grown in a custom-built indoor farm exhibited differences in E. coli O157:H7 survival after inoculation. The survival of E. coli O157:H7 was lowest in the leaf cultivar (open architecture) and highest in the romaine and oakleaf cultivars (compact architecture). Of the different UV wavelengths that were tested (UV-A, UV-A + B, UV-A + C), UV A + C at an intensity of 54.5 μmol m-2 s-1 (with 3.5 μmol m-2 s-1 of UV-C), provided for 15 min every day, was found to be most efficacious in reducing the E. coli O157:H7 survival on romaine lettuce with no negative effects on plant growth and quality. Contamination of E. coli O157:H7 on lettuce plants can be reduced and the food safety levels in indoor farms can be increased by selecting cultivars with an open leaf architecture coupled with photo-sanitization using low and frequent exposure to UV A + C radiation. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.