Abstract
Mobile Adhoc Networks (MANETs) typically employ with the aid of new technology to increase Quality-of-Service (QoS) when forwarding multiple data rates. This kind of network causes high forwarding delays and improper data transfer rates because of the changes in the node’s vicinity. Although an optimized routing technique to transfer energy has been used to lessen the delay and improve the throughput by assigning a proper data rate, it does not consider the objective of minimizing the energy use, which results in less network lifetime. The goal of the proposed work is to minimize the energy depletion in a MANET, which results in an extended Lifespan of the network. In this research paper, an Extended Life span and QSSM-ML routing algorithm is proposed, which minimizes energy use and enhances the network lifetime. First, an optimization problem is formulated with the purpose of increasing the network’s lifetime while limiting the energy utilization and stability of the path along with residual. Second, an adaptive policy is applied for the asymmetric distribution of energy at both origin and intermediate nodes. In order to achieve maximum network lifespan and minimal energy depletion, the optimization problem was framed when power usage is a constraint by allowing the network to make use of the leftover power. An asymmetric energy transmission strategy was also designed for the adaptive allocation of maximum transmission energy in the origin. This made the network lifespan extended with the help of reducing the node’s energy use for broadcasting the data from the origin to the target. Moreover, the node’s energy use during packet forwarding is reduced to recover the network lifetime. The overall benefit of the proposed work is that it can achieve both minimal energy depletion and maximizes the lifetime of the network. Finally, the simulation findings reveal that the ELQSSM-ML algorithm accomplishes a better network performance than the classical algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.