Abstract

Random walk (RW) routing for Wireless Sensor Networks (WSNs) has been proven to balance energy consumption for the whole sensors. Since Compressive sensing (CS) provides a novel idea that can reconstruct all raw data based on a small number of measurements, the energy consumption for data gathering in WSNs is reduced significantly. The combination between RW routing and CS can help efficiently save energy and achieve longer network lifetime. In this paper, we continue to introduce RW as an effective routing method in WSNs utilizing CS. We formulate the mean value of the communication distance between sensors in a RW and the mean distance between RWs and the base station (BS) statistically. We finally build the total energy consumption and exploit the minimum energy consumption case for the network. Based on analyzing the sensor broadcasting radius, while the WSN is connected as an undirected graph G(V, E), we can suggest the optimal radius that leads the network consumes the least energy and even has load balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.