Abstract
When a pontoon-type, very large floating structure is heavily loaded in the central portion, it will deform with its central deflection much larger than its corner deflections. The resulting differential deflection, if large enough, may cause machines and equipment sensitive to differential deflection to cease operation or the floating structure to be subjected to additional large stresses. In this paper, we introduce the so-called gill cells which are compartments within the floating structure with holes or slits at the bottom floor to allow water to flow in and out freely. It will be shown herein that these gill cells reduce the differential deflection and the bending stresses significantly while maintaining the structural stiffness integrity by using the example problem of a super-large floating container terminal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.