Abstract

(1) Background: The purpose of this study was to investigate deformations that occur during additive manufacturing by the HP (Hewlett-Packard) Multi Jet Fusion (MJF) process. These deformations affect the final properties of 3D-printed parts, and proper compensating technology has to be developed in order to minimize these deformations. (2) Methods: Parts were printed with powder composed of nylon plastic infused with glass beads (PA12GB). The HP MJF technology was used during investigations. All parts (specimens) were measured at different points over an extended period to follow the deformations at each point. Different finite element simulations were performed to compare them with real results and assess the viability of using simulations to save time. Various modules of the Digimat software, such as additive manufacturing (AM), material focused (MF), finite element (FE), and computer-aided engineering (CAE), were used to run the simulations. (3) Results: It was found that the printing position of the part in the printer had an impact on deformations. When the part was simulated in a tilted position but alone (deformation: 7.19 mm), the value of the deformation was 1.49 mm greater than when the other parts (two comparable parts) were simulated at the same time (deformation: 5.7 mm). The difference between the simulation with the three parts together (deformation: 5.7 mm) and reality (deformation: 3.44 mm) was 2.26 mm. Finally, the difference between the simulated single part (deformation: 7.19 mm) and the real part (deformation: 3.44) was 3.75 mm. (4) Conclusions: The results of this study will contribute to a better understanding of deformation mechanisms and will suggest solutions for improving the quality of printed parts. Three-dimensional printing is a rapidly growing technology that offers numerous possibilities across various fields. However, one commonly encountered issue is the deformation of printed parts. Methods for minimizing deformations were studied during the 3D printing process using HP MJF technology. Various factors contributing to deformation were investigated, and different techniques for reducing them were explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call