Abstract
Cloud computing helps in providing the applications with a few number of resources that are used to unload the tasks. But there are certain applications like coordinated lane change assistance which are helpful in cars that connects to internet has strict time constraints, and it may not be possible to get the job done just by unloading the tasks to the cloud. Fog computing helps in reducing the latency i.e the computation is now done in local fog servers instead of remote datacentres and these fog servers are connected to the nearby distance to clients. To achieve better timing performance in fog computing load balancing in these fog servers is to be performed in an efficient manner.The challenges in the proposed application includes the number of tasks are high, client mobility and heterogeneous nature of fog servers. We use mobility patterns of connected cars and load balancing is done periodically among fog servers. The task model presented here in this paper solves scheduling problem and this is done at the server level and not on the device level. And at last, we present an optimization problem formulation for balancing the load and for reducing the misses in deadline, also the time required for running the task in these cars will be minimized with the help of fog computing. It also performs better than somecommon algorithms such as active monitoring, weighted round robin and throttled load balancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.