Abstract

We complete the complexity classification by degree of minimizing a polynomial over the integer points in a polyhedron in a real vector space of dimension two. Previous work shows that optimizing a quadratic polynomial over the integer points in a polyhedral region in a real vector space of dimension two can be done in polynomial time, whereas optimizing a quartic polynomial in the same type of region is NP-hard. We close the gap by showing that this problem can be solved in polynomial time for cubic polynomials. Furthermore, we show that the problem of minimizing a homogeneous polynomial of any fixed degree over the integer points in a bounded polyhedron in a real vector space of dimension two is solvable in polynomial time. We show that this holds for polynomials that can be translated into homogeneous polynomials, even when the translation vector is unknown. We demonstrate that such problems in the unbounded case can have smallest optimal solutions of exponential size in the size of the input, thus requiring a compact representation of solutions for a general polynomial time algorithm for the unbounded case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.