Abstract

The connections between renormalization in statistical mechanics and information theory are intuitively evident, but a satisfactory theoretical treatment remains elusive. We show that the real space renormalization map that minimizes long range couplings in the renormalized Hamiltonian is, somewhat counterintuitively, the one that minimizes the loss of short-range mutual information between a block and its boundary. Moreover, we show that a previously proposed minimization focusing on preserving long-range mutual information is a relaxation of this approach, which indicates that the aims of preserving long-range physics and eliminating short-range couplings are related in a nontrivial way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.