Abstract
When an observable is measured on an evolving coherent quantum system twice, the first measurement generally alters the statistics of the second one, which is known as measurement backaction. We introduce, and push to its theoretical and experimental limits, a novel method of backaction evasion, whereby entangled collective measurements are performed on several copies of the system. This method is inspired by a similar idea designed for the problem of measuring quantum work [Perarnau-Llobet etal., Phys. Rev. Lett. 118, 070601 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.070601]. By using entanglement as a resource, we show that the backaction can be extremely suppressed compared to all previous schemes. Importantly, the backaction can be eliminated in highly coherent processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.