Abstract

Formamidinium lead triiodide (FAPbI3) currently holds the record conversion efficiency in the single-junction perovskite solar cell. Iodine management is known to be essential to suppress defect-induced nonradiative losses in FAPbI3 active layers. However, the origin of nonradiative losses and the underlying mechanism of suppressing such losses by iodine-concentration management remain unknown. Here, through first-principles simulation, we demonstrate that native point defects are not responsible for the nonradiative losses in FAPbI3. Instead, hydrogen ions, which can be abundant under both iodine-rich and iodine-poor conditions in FAPbI3, act as efficient nonradiative recombination centers and are proposed to be responsible for the suppressed power conversion efficiency. Moreover, iodine-moderate synthesis conditions can favor the formation of electrically inactive molecular hydrogen, which can dramatically suppress the detrimental hydrogen ions. This work identifies the dominant nonradiative recombination centers in the widely used FAPbI3 layers and rationalizes how the prevailing iodine management reduces the nonradiative losses. Minimizing the unintentional hydrogen incorporation in the perovskite is critical for achieving high device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.