Abstract

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas and under any atmospheric conditions. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, e.g. megacities, and/or biomass-burning episodes, affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases caused by aerosol scattering and absorption effects is one of the main retrieval challenges from air quality satellite instruments. In this study, the reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2−O2 band, over eastern China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last 2 years in view of an improved use of the OMI 477 nm O2−O2 band: the updated OMCLDO2 algorithm, which derives improved effective cloud parameters, the aerosol neural network (NN), which retrieves explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead of OMCLDO2 because it primarily estimates an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance dominated by fine scattering and weakly absorbing particles, e.g. from [-20%:-40%] to [0 %:20 %] in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 %:40 %], than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes a more realistic consideration of aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. For that purpose, several elements are recommended in this paper. Overall, we demonstrate the possibility of applying a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2−O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).

Highlights

  • Long-time series of UV–visible (UV–vis) satellite measurements are a great asset for monitoring the distribution and evolution of pollutants such as NO2, HCHO, or SO2 and aerosol particles in the troposphere

  • With the forthcoming new generation of sensors like TROpospheric Ozone Monitoring Instrument (TROPOMI) on board Sentinel-5Precursor (Veefkind et al, 2012), Sentinel-4-UVN and Sentinel-5-UVNS within the Copernicus programme (Ingmann et al, 2012), they will become an important tool for verifying the effectiveness of implemented technology to protect the environment and population against air pollution (Duncan et al, 2016)

  • This paper aims to evaluate the benefits of our improved use of the OMI 477 nm O2−O2 band for correcting aerosol effects in tropospheric NO2 vertical column density (VCD) retrieval from the same visible observation

Read more

Summary

Introduction

Long-time series of UV–visible (UV–vis) satellite measurements are a great asset for monitoring the distribution and evolution of pollutants such as NO2, HCHO, or SO2 and aerosol particles in the troposphere. While the last generation of space instruments have had a pixel size of 13 × 24 km for the Ozone Monitoring Instrument (OMI) or 80 × 40 km for the Global Ozone Monitoring Experiment (GOME-2), the new generation has smaller pixel sizes (about 7 × 3.5 km for TROPOMI), allowing air quality mapping of complex urban and city areas. This is expected to reduce the probability of cloud contamination. The related global mapping of tropospheric NO2 concentrations has been used by many air quality research studies focusing on NOx emissions and secondary pollutant formation, as well as tropospheric NOx chemistry and transport, e.g. Curier et al (2014), Reuter et al (2014) and Ding et al (2015)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.