Abstract

Data cube is the foundation of on-line analytical processing (OLAP), which can provide users with data views from different perspectives and granularities. Heterogeneous information networks consist of multiple types of nodes and edges which represent different semantic relations. With the rapid development of social networks and knowledge graphs, heterogeneous information networks have become increasingly popular. In heterogeneous information networks, cube is the set of aggregate graphs and cube query is required for supporting OLAP. The existing research mainly studies aggregate graph query on homogeneous networks, but only considers the attributes of nodes. To overcome these challenges, this paper investigates cube query problem on heterogeneous information networks. (1) A novel cube model for heterogeneous information networks is proposed, which captures both the attribute and structure semantics. (2) Because the total number of aggregate graphs is huge, computing and storing them cost plenty of time and storage. The problem of partial cube materialization on heterogeneous information networks is investigated. Given a fixed size of memory space, select a subset of aggregate graphs in cube, to minimize the computing cost of the whole cube. This optimization problem is proved to be NP-complete and there is no $$n^{1-{\epsilon }}$$n1-∈ approximation algorithm unless P $$=$$= NP. (3) A greedy algorithm is proposed for partial cube materialization based on two interesting dependencies between aggregate graphs, attribute dependence and path dependence. (4) Experiments on real world data sets show the cube definition is meaningful, and the partial cube materialization algorithm is efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.