Abstract

By following the approaches of Kada et al. [13], we define a family of weak quasi-metrics in a generating space of quasi-metric family. By using a family of weak quasi-metrics, we prove a Takahashi-type minimization theorem, a generalized Ekeland variational principle and a general Caristi-type fixed point theorem for set-valued maps in complete generating spaces of quasi-metric family. Also, by following the approach of Aubin [11], we prove another fixed point theorem for set-valued maps in complete generating spaces of quasi-metric family without the assumption of lower semicontinuity. From our results in complete generating spaces of quasi-metric family, we obtain the corresponding theorems for set-valued maps in complete fuzzy metric spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.