Abstract

This paper presents a control technique for torque-ripple minimization in the switched reluctance motor (SRM) drive, based on a torque-sharing function (TSF) concept. In the proposed method, the reference torque is directly translated into the reference current waveform using the analytical expression. Optimization criteria of a TSF that are concerned with secondary objectives, such as minimization of copper losses or maximization of drive performance, are described. In addition, a novel family of TSFs is introduced. An optimal TSF can be easily extracted from the proposed family to satisfy one of the secondary objectives or to create balance between more of them. Control performances of the two extracted TSFs and the two optimized conventional (linear and sinusoidal) TSFs are compared. These four TSFs keep the copper losses to nearly the theoretical minimum. Each of them provides approximately the same operation efficiency of the considered three-phase 6/4 SRM drive. However, due to extension of the commutation angle between adjacent phases, TSFs from the proposed family provide better torque-speed characteristics. Moreover, one of them expands the possible speed range of torque-ripple-free drive operation, and another one, which provides the best torque-speed characteristics, reduces the peak phase current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.