Abstract

The evolution of self-organized nanoscale ripple patterns induced by low-energy ion sputtering of silicon is investigated. The quality of the patterns is monitored by calculating a normalized density of topological defects from atomic force microscopy images. A strong dependence of the normalized defect density on the applied ion fluence is observed with a well-pronounced minimum at intermediate fluences. Simulations using the damped Kuramoto–Sivashinsky equation yield good agreement with the experiments and are further used to study the dynamics of single pattern defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.