Abstract

Thin metallic films are used as passband filters in space telescopes operating in the extreme ultraviolet (EUV). Because of their thinness, typically 100 to 200 nm, they are very sensitive to static pressure differentials and to mechanic and acoustic vibrations. Therefore, they are difficult to manage in all phases of a space program, from manufacturing to vacuum testing to launch. A common solution to this problem is to reinforce them with fine mesh grids with pitches ranging from a few hundred micrometers to a few millimeters. Depending on their location in the optical path, the main effect of these periodic grids is either to diffract light or to cast penumbral shadows on the focal plane. In this paper, we analyze the formation of the shadow modulation patterns and derive design rules to minimize their amplitude. The minimization principle is illustrated by an application to a solar EUV telescope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call