Abstract

In this study, a theoretical model is developed for investigating the effect of thermal annealing on a single-layer quaternary-capped (In0.21Al0.21Ga0.58As) InAs quantum dot heterostructure (sample A) and compared to a conventional GaAs-capped sample (sample B). Strain, an interfacial property, aids in dot formation; however, it hinders interdiffusion (up to 650 °C), rendering thermal stability to heterostructures. Three diffusing species In/Al/Ga intermix because of the concentration gradient and temperature variation, which is modeled by Fick’s law of diffusion. Ground-state energy for both carriers (electron and holes) is calculated by the Schrodinger equation at different annealing temperatures, incorporating strain computed by the concentration-dependent model. Change in activation energy due to strain decreases particle movement, thereby resulting in thermally stable structures at low annealing temperatures. At low temperature, the conduction band near the dot edge slightly decreases, attributed to the comparatively high strain. Calculated results are consistent with the experimental blue-shift i.e. towards lower wavelength of photoluminescence peak on the same sample with increasing annealing temperatures. Cross-sectional transmission microscopy (TEM) images substantiate the existence of dot till 800 °C for sample (A). With increasing annealing temperature, interdiffusion and dot sublimation are observed in XTEM images of samples A and B. Strain calculated from high-resolution X-ray diffraction (HRXRD) peaks and its decline with increasing temperature are in agreement with that calculated by the model. For highlighting the benefits of quaternary capping, InAlGaAs capping is theoretically and experimentally compared to GaAs capping. Concentration-dependent strain energy is calculated at every point and is further used for computing material interdiffusion, band profiles, and photoluminescence peak wavelength, which can provide better insights into strain energy behavior with temperature and help in the better understanding of thermal annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call