Abstract

Submodular function minimization is a polynomially solvable combinatorial problem. Unfortunately the best known general-purpose algorithms have high-order polynomial time complexity. In many applications the objective function is locally defined in that it is the sum of cost functions (also known as soft or valued constraints) whose arities are bounded by a constant. We prove that every valued constraint satisfaction problem with submodular cost functions has an equivalent instance on the same constraint scopes in which the actual minimum value of the objective function is rendered explicit. Such an equivalent instance is the result of establishing optimal soft arc consistency and can hence be found by solving a linear program. From a practical point of view, this provides us with an alternative algorithm for minimizing locally defined submodular functions. From a theoretical point of view, this brings to light a previously unknown connection between submodularity and soft arc consistency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.