Abstract

Ultra-fine grained steel (UFGS) with an average grain size of less than 1 μm has been developed and is expected to demonstrate superior mechanical and chemical properties. However, its welded heat-affected zones, HAZ, substantially affecting the strength of a welded joint, will be easily softened after welding. Therefore, minimization of UFGS's HAZ size during laser welding was carried out using the cooling conductor liquid nitrogen. It was found that a shielding gas, with adequate flow rate for the liquid nitrogen depth, was used to remove nitrogen from the area of laser beam irradiation to stabilize the weld bead. Also, the YAG laser system was mainly used because it has a lower temperature, which results in a decreased occurrence of pits and blowholes, of laser induced plasma or plume. HAZ size minimization strongly depends on the initial plate temperature. Reduced initial plate temperature shrinks the specific heated temperature range in which softening occurs. However, under room temperature, due possibly to decreasing thermal conductivity that prevents heat removal from HAZ, the benefit of reducing the initial plate temperature is limited. The optimal initial temperature to minimize the HAZ size was found to be 123 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.