Abstract

In this work we study the minimization of a linear functional defined on a set of approximate solutions of a discrete ill-posed problem. The primary application of interest is the computation of confidence intervals for components of the solution of such a problem. We exploit the technique introduced by Elden in 1990, utilizing a parametric programming reformulation involving the solution of a sequence of quadratically constrained least squares problems. Our iterative method, which uses the connection between Lanczos bidiagonalization and Gauss-type quadrature rules to bound certain matrix functionals, is well-suited for large-scale problems, and offers a significant reduction in matrix-vector product evaluations relative to available methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call