Abstract

Purpose. Justification of technical solutions as to the reduction of the amplitude and reduction of the dynamic change duration in the tension of the rolling stock at the exit of the output cage when moving to winding a new layer to an acceptable level in terms of its effect on the resulting profile of the rolled product through the control of the rotation frequency of an output cage. Methodology. The conducted research was based on a complex model of the process of rolled steel winding with a Garrett-type winder and the tension of rolled steel in the area of the exit cage-winder. To control the actual amount of tension at the output cage exit, it is suggested to use the amount of free deflection of the rolled steel directly behind the cage. The research was carried out by simulating the process of rolled steel winding according to the basic control scheme and control schemes that predict the influence on both drives, i.e. the winder drive and the output cage drive according to the actual value of tension, in various combinations with further analysis and comparison of the obtained results. Findings. It was established that the correction for the deviation of the actual rolling tension in the finishing cage-winder area from the specified value of the winding current of the winder electric drive does not eliminate rolling tension when switching to the next layer winding and the oscillating form of the transition process, which are characteristic of the basic rolling winding scheme. In turn, the correction of the rotation frequency of the output cage rolls drive reduces the amplitude of the roll tension jerk by almost half with a simultaneous reduction in the time of the transition process and readjustment when switching to a new layer winding. Originality. It has been shown for the first time that the introduction of the roll tension control circuit by correcting the high-speed rolling mode of the output cage ensures minimization of dynamic changes in the rolled steel tension when switching to a new layer winding and reduces the probability of local tightening of rolled steel profile. Practical value. The use of the described technical solutions in the control system of the section of rolled products winding of the small-grade wire mill DSDS 250/150-6 PJSC ArcelorMittal Kryvyi Rih ensures the improvement of the commercial properties of the winding of rolled products produced on the rolling mill.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call