Abstract
In the preliminary design stage of an RC 3D-frame, repeated sequential analyses to determine optimal members' sizes and the investigation of the parameters required to minimize the differential column shortening are computational effort consuming, especially when considering various types of loads such as dead load, temperature action, time dependent effects, construction and live loads. Because the desired accuracy at this stage does not justify such luxury, two backpropagation feedforward artificial neural networks have been proposed in order to approximate this information. Instead of using a commercial software package, many references providing advanced principles have been considered to code a program and generate these neural networks. The first one predicts the typical amount of time between two phases, needed to achieve the minimum maximorum differential column shortening. The other network aims to prognosticate sequential analysis results from those of the simultaneous analysis. After the training stages, testing procedures have been carried out in order to ensure the generalization ability of these respective systems. Numerical cases are studied in order to find out how good these ANN match with the sequential finite element analysis. Comparison reveals an acceptable fit, enabling these systems to be safely used in the preliminary design stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.