Abstract

This paper considers the problem of sequencing mixed-model assembly lines (MMALs). Our goal is to determine the sequence of products to minimise work overload. This problem is known as the MMAL sequencing problem with work overload minimisation: we explicitly use task operation times to find the product sequence. This paper is based on an industrial case study of a truck assembly line. In this industrial context, as a reaction to work overloads, operators at the workstations finish their tasks before the product reaches the next workstation, but at the expense of fatigue. Furthermore, there are different types of operators, each with different task responsibilities. The originality of this work is to model this new way of reacting against work overloads, to integrate three operator types in the sequencing model and to apply the developed methods in a real industrial context. To solve this problem, we propose three meta-heuristic procedures: genetic algorithm, simulated annealing and a combination of these two meta-heuristics. All the methods proposed are tested on industrial data and compared to the solutions obtained using a mixed-integer linear programme. The results show that the proposed methods considerably improve the results of the current procedure used in the case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.