Abstract
We study a problem of minimising the total number of zeros in the gaps between blocks of consecutive ones in the columns of a binary matrix by permuting its rows. The problem is referred to as the Consecutive Ones Matrix Augmentation Problem, and is known to be NP-hard. An analysis of the structure of an optimal solution allows us to focus on a restricted solution space, and to use an implicit representation for searching the space. We develop an exact solution algorithm, which is linear-time in the number of rows if the number of columns is constant, and two constructive heuristics to tackle instances with an arbitrary number of columns. The heuristics use a novel solution representation based upon row sequencing. In our computational study, all heuristic solutions are either optimal or close to an optimum. One of the heuristics is particularly effective, especially for problems with a large number of rows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.