Abstract
Stringent effluent quality programs to limit wastewater discharges into receiving waters require extensive upgrading of conventional wastewater treatment plants. Large facilities built some decades ago are now often located in densely urbanised areas where land is unavailable. Since nitrogen and phophorus removal often require additional unit processes, innovative solutions have to be found to upgrade existing plants for nutrient removal. This paper shows large scale examples of compact technology and the additional upgrading flexibility provided. New facilities are implemented in sensitive neighborhoods by creative siting under sports stadiums, parks or buildings. In covered plants, air emission control becomes of primary importance. To reduce visual impacts and facilitate odour control, more and more underground treatment plants are constructed, allowing multiple use of plant surfaces. Several plants are illustrated in inner-city locations, avoiding infrastructure cost to pump sewage to remote sites. Most of the presented plants incorporate spacesaving settling facilities and high rate biological reactors to reduce the ‘footprints' of the installations and thus favour coverage. Parallel plates in primary setllers reduce the surface to about one tenth of conventional systems. Biocarbone aerated filters combine biodegradation with very high removal rates and retention of particles in one reactor, without additional clarification or filtration. Air treatment for large plant is mostly performed by chemical scrubbing, completely eliminating environmental nuisances. Performance results of both air and water treatment technology are given. Examples include recent sewage treatment plants on the French Mediterranean Coast. A physico-chemical treatment plant for 1 Million p.e. has operated since 1987 under a stadium in Marseille. In Monaco, the sewage treatment plant for 100 000 p.e.is located in the city center underneath a building of 3000 m2. Primary lamella settlers are followed by biological treatment on Biocarbone aerated filters and air is chemically deodourised. Similar technology is used in Antibes' 200 000 p.e. plant, integrated underneath a park close to the beach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.