Abstract

We investigate the existence of non-constant uniformly-bounded minimal solutions of the Allen–Cahn equation on a Gromov-hyperbolic group. We show that whenever the Laplace term in the Allen–Cahn equation is small enough, there exist minimal solutions satisfying a large class of prescribed asymptotic behaviours. For a phase field model on a hyperbolic group, such solutions describe phase transitions that asymptotically converge towards prescribed phases, given by asymptotic directions. In the spirit of de Giorgi's conjecture, we then fix an asymptotic behaviour and let the Laplace term go to zero. In the limit we obtain a solution to a corresponding asymptotic Plateau problem by Γ-convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.