Abstract
The recent literature has intensively studied two classes of nonlocal variational problems, namely the ones related to the minimisation of energy functionals that act on functions in suitable Sobolev–Gagliardo spaces, and the ones related to the minimisation of fractional perimeters that act on measurable sets of the Euclidean space. In this article, we relate these two types of variational problems. Specifically, we investigate the connection between the nonlocal minimal surfaces and the minimisers of the W^{s,1} -seminorm. In particular, we show that a function is a minimiser for the fractional seminorm if and only if its level sets are minimisers for the fractional perimeter, and that the characteristic function of a nonlocal minimal surface is a minimiser for the fractional seminorm; we also provide an existence result for minimisers of the fractional seminorm, an explicit non-uniqueness example for nonlocal minimal surfaces, and a Yin–Yang result describing the full and void patterns of nonlocal minimal surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.