Abstract
ABSTRACTThe problem of estimating the baseline signal from multisample noisy curves is investigated. We consider the functional mixed-effects model, and we suppose that the functional fixed effect belongs to the Besov class. This framework allows us to model curves that can exhibit strong irregularities, such as peaks or jumps for instance. The lower bound for the minimax risk is provided, as well as the upper bound of the minimax rate, that is derived by constructing a wavelet estimator for the functional fixed effect. Our work constitutes the first theoretical functional results in multisample nonparametric regression. Our approach is illustrated on realistic simulated datasets as well as on experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.