Abstract

Recently, network analysis has gained more and more attention in statistics, as well as in computer science, probability and applied mathematics. Community detection for the stochastic block model (SBM) is probably the most studied topic in network analysis. Many methodologies have been proposed. Some beautiful and significant phase transition results are obtained in various settings. In this paper, we provide a general minimax theory for community detection. It gives minimax rates of the mis-match ratio for a wide rage of settings including homogeneous and inhomogeneous SBMs, dense and sparse networks, finite and growing number of communities. The minimax rates are exponential, different from polynomial rates we often see in statistical literature. An immediate consequence of the result is to establish threshold phenomenon for strong consistency (exact recovery) as well as weak consistency (partial recovery). We obtain the upper bound by a range of penalized likelihood-type approaches. The lower bound is achieved by a novel reduction from a global mis-match ratio to a local clustering problem for one node through an exchangeability property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.