Abstract
Minimax-rate adaptive nonparametric regression has been intensively studied under the assumption of independent or uncorrelated errors in the literature. In many applications, however, the errors are dependent, including both short- and long-range dependent situations. In such a case, adaptation with respect to the unknown dependence is important. We present a general result in this direction under Gaussian errors. It is assumed that the covariance matrix of the errors is known to be in a list of specifications possibly including independence, short-range dependence and long-range dependence as well. The regression function is known to be in a countable (or uncountable but well-structured) collection of function classes. Adaptive estimators are constructed to attain the minimax rate of convergence automatically for each function class under each correlation specification in the corresponding lists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.