Abstract
Minimax kernels for nonparametric curve estimation are investigated. They are defined to be the solutions to the kernel variational problem arising from the asymptotic maximum risk of the kernel density or derivative estimation established in this paper. A δ-perturbation method is employed to solve the kernel variational problem. Such a δ-perturbation method can be used in solving other variational problems such as the variational problem of Gasser, Müller and Mammitzsch (1985). We obtain the explicit expressions of the minimax kernels by an algorithm developed in the Appendix and tabulate the asymptotic relative efficiencies among the minimax kernels, optimal kernels and Gaussian-based kernels for further reference. The minimax kernels are shown to possess not only the minimax property, but also have higher asymptotic efficiency in the conventional, non-minimax sense. As a by-product of our study, the asymptotic minimax risks for the kernel density and derivative estimators are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.