Abstract

This paper discusses the use of evolutionary programming (EP) for computer-aided design and testing of neural controllers applied to problems in which the system to be controlled is highly uncertain. Examples include closed-loop control of drug infusion and integrated control of HVAC/lighting/utility systems in large multi-use buildings. The method is described in detail and applied to a modified Cerebellar Model Arithmetic Computer (CMAC) neural network regulator for systems with unknown time delays. The design and testing problem is viewed as a game, in that the controller is chosen with a minimax criterion i.e., minimize the loss associated with its use on the worst possible plant. The technique permits analysis of neural strategies against a set of feasible plants. This yields both the best choice of control parameters and identification of that plant which is most difficult for the best controller to handle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.