Abstract
This paper considers the problem of joint change detection and identification assuming multiple composite post-change hypotheses. We propose a multihypothesis changepoint detection-identification procedure that controls the probabilities of false alarm and wrong identification. We show that the proposed procedure is asymptotically minimax and pointwise optimal, minimizing moments of the detection delay as probabilities of false alarm and wrong identification approach zero. The asymptotic optimality properties hold for general stochastic models with dependent and nonidentically distributed observations. We illustrate general results for detection-identification of changes in multistream Markov ergodic processes. We consider several examples, including an application to rapid detection-identification of COVID-19 in Italy. Our proposed sequential algorithm allows much faster detection of COVID-19 than standard methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.