Abstract

Minimally modified low density lipoprotein (mmLDL) is a well-known risk factor for coronary artery disease. Upregulation of vascular endothelin type B (ETB) receptors on the vascular smooth muscle cells is predicted to be the molecular mechanism that leads to cardiovascular pathogenesis. The objective of the present study was to examine the hypothesis that mmLDL upregulates ETB receptors in rat coronary artery. The contractile responses to sarafotoxin 6c (ETB receptor agonist) were studied using a sensitive myograph. ETB receptor mRNA and protein expression was determined using real-time PCR and Western blot analysis. The results showed that organ culture increased the contractile responses induced by sarafotoxin 6c and the levels of ETB receptor mRNA and protein. This increase was further enhanced by the addition of mmLDL (10μg/mL). Specific ERK1/2 inhibitors (SB386023 and U0126) and an NF-κB inhibitor (wedelolactone) attenuated the mmLDL-increased ETB receptor-mediated contraction and ETB receptor mRNA and protein levels. Wedelolactone significantly attenuated the mmLDL-decreased IκBα protein expression. Consistent with this result, IκBα protein expression was significantly decreased by culture with mmLDL compared to the level of expression in the organ culture group. However, the JNK inhibitor, SP600125 or p38 pathway inhibitor, SB203580 did not inhibit mmLDL-enhanced effects. The PKC inhibitor, staurosporine attenuated only culture-alone-increased effects. In conclusion, mmLDL upregulates the ETB receptors in rat coronary arterial smooth muscle cells, mainly via activation of the ERK1/2 MAPK and the downstream transcriptional factor NF-κB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call