Abstract

We discuss the existence of pullback attractors for multivalued dynamical systems on metric spaces. Such attractors are shown to exist without any assumptions in terms of continuity of the solution maps, based only on minimality properties with respect to the notion of pullback attraction. When invariance is required, a very weak closed graph condition on the solving operators is assumed. The presentation is complemented with examples and counterexamples to test the sharpness of the hypotheses involved, including a reaction-diffusion equation, a discontinuous ordinary differential equation, and an irregular form of the heat equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.