Abstract

We consider the minimization of an energy functional given by the sum of a crystalline perimeter and a nonlocal interaction of Riesz type, under volume constraint. We show that, in the small mass regime, if the Wulff shape of the anisotropic perimeter has certain symmetry properties, then it is the unique global minimizer of the total energy. In dimension two this applies to convex polygons which are reflection symmetric with respect to the bisectors of the angles. We further prove a rigidity result for the structure of (local) minimizers in two dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.