Abstract

Estimating the distance traveled while navigating in a GPS-deprived environment is key for aerial robotic applications. For drones, this issue is often coupled with weight and computational power constraints, from which stems the importance of minimalistic equipment. In this study, we present a visual odometry strategy based solely on two optic flow magnitudes perceived by two optic flow sensors oriented at ±30° on either side of a drone’s vertical axis. As results, (i) we measured the local optic flow divergence and the local translational optic flow respectively as the subtraction and the sum of the two optic flow magnitudes perceived (ii) we validated experimentally the visual odometer on a hexarotor oscillating up-and-down while following a 50m-long circular trajectory under three illuminance conditions (117lux, 814lux and 1518lux). The measured optic flow divergence was used to estimate the flight height by means of an Extended Kalman Filter. The estimated flight height scaled the measured translational optic flow, which was integrated to perform minimalistic visual odometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.