Abstract
Liquid–liquid phase separation (LLPS) is an emerging and universal mechanism for intracellular organization, particularly, by forming membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Genetic engineering is generally applied to reconstruct IDPs harboring over 100 amino acid residues. Here, we report the first design of synthetic hybrids consisting of short oligopeptides of fewer than 10 residues as “stickers” and dextran as a “spacer” to recapitulate the characteristics of IDPs, as exemplified by the multivalent FUS protein. Hybrids undergo LLPS into micron-sized liquid droplets resembling LLPS in vitro and in living cells. Moreover, the droplets formed are capable of recruiting proteins and RNAs and providing a favorable environment for a biochemical reaction with highly enriched components, thereby mimicking the function of natural MLOs. This simple yet versatile model system can help elucidate the molecular interactions implicated in MLOs and pave ways to a new type of biomimetic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.