Abstract

Properties of first-order Sobolev-type spaces on abstract metric measure spaces, so-called Newtonian spaces, based on quasi-Banach function lattices are investigated. The set of all weak upper gradients of a Newtonian function is of particular interest. Existence of minimal weak upper gradients in this general setting is proven and corresponding representation formulae are given. Furthermore, the connection between pointwise convergence of a sequence of Newtonian functions and its convergence in norm is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.