Abstract

Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this abstract, we characterize an optimal distributed algorithm that minimizes service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. Moreover, we show how close the performance of the optimal distributed algorithm is to that of the optimal centralized algorithm by deriving a competitive-ratio-like bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.