Abstract

In order to understand the relative expressive power of larger concurrent programming languages, we analyze translations of small process calculi which model the communication and synchronization of concurrent processes. The source language SYNCSIMPLE is a minimalistic model for message passing concurrency while the target language LOCKSIMPLE is a minimalistic model for shared memory concurrency. The former is a calculus with synchronous communication of processes, while the latter has synchronizing mutable locations - called locks - that behave similarly to binary semaphores. The criteria for correctness of translations is that they preserve and reflect may-termination and must-termination of the processes. We show that there is no correct compositional translation from SYNCSIMPLE to LOCKSIMPLE that uses one or two locks, independent from the initialisation of the locks. We also show that there is a correct translation that uses three locks. Also variants of the locks are taken into account with different blocking behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.