Abstract

This paper is devoted to a study of the connection between the immersion functions of two-dimensional surfaces in Euclidean or hyperbolic spaces and classical orthogonal polynomials. After a brief description of the soliton surfaces approach defined by the Enneper-Weierstrass formula for immersion and the solutions of the Gauss-Weingarten equations for moving frames, we derive the three-dimensional numerical representation for these polynomials. We illustrate the theoretical results for several examples, including the Bessel, Legendre, Laguerre, Chebyshev and Jacobi functions. In each case, we generate a numerical representation of the surface using the Mathematica symbolic software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.