Abstract

Definitions are given of the maximum and minimum free energy associated with a given state of a material with memory. Also, the concept of a minimal state is introduced. These concepts are then explored in detail for a specific isothermal model, where the stress is given by a non-linear elastic part and a memory part which is a linear functional of the strain tensor history. It is shown that the equivalence class constituting a minimal state is a singleton except where only isolated singularities occur in the Fourier transform of the relaxation tensor derivative. If the minimal state is not a singleton, then the maximum free energy is less than the work function and is a function of the minimal state. An explicit expression is given for the maximum free energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.