Abstract
A sequential space (X, T) is called minimal sequential if no sequential topology on X is strictly weaker than T. This paper begins the study of minimal sequential Hausdorff spaces. Characterizations of minimal sequential Hausdorff spaces are obtained using filter bases, sequences, and functions satisfying certain graph conditions. Relationships between this class of spaces and other classes of spaces, for example, minimal Hausdorff spaces, countably compact spaces, H‐closed spaces, SQ‐closed spaces, and subspaces of minimal sequential spaces, are investigated. While the property of being sequential is not (in general) preserved by products, some information is provided on the question of when the product of minimal sequential spaces is minimal sequential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.