Abstract
We define the (convex) joint numerical range for an infinite family of compact operators in a Hilbert space H. We use this set to determine whether a self-adjoint compact operator A with ±‖A‖ in its spectrum is minimal respect to the set of diagonals in a fixed basis E of H in the operator norm, that is ‖A‖≤‖A+D‖, for all diagonal D. We also describe the moment set mS=conv{|v|2:v∈S and ‖v‖=1} of a subspace S⊂H in terms of joint numerical ranges and obtain equivalences between the intersection of moments of two subspaces and of its two related joint numerical ranges. Moreover, we relate the condition of minimality of A or the intersection of the moments of the eigenspaces of ±‖A‖ to the intersection of the joint numerical ranges of two finite families of certain finite hermitian matrices. We also study geometric properties of the set mS such as extremal curves related with the basis E. All these conditions are directly related with the description of minimal self-adjoint compact operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.