Abstract

We study reversible deterministic finite automata (REV-DFAs), that are partial deterministic finite automata whose transition function induces an injective mapping on the state set for every letter of the input alphabet. We give a structural characterization of regular languages that can be accepted by REV-DFAs. This characterization is based on the absence of a forbidden pattern in the (minimal) deterministic state graph. Again with a forbidden pattern approach, we also show that the minimality of REV-DFAs among all equivalent REV-DFAs can be decided. Both forbidden pattern characterizations give rise to [Formula: see text]-complete decision algorithms. In fact, our techniques allow us to construct the minimal REV-DFA for a given minimal DFA. These considerations lead to asymptotic upper and lower bounds on the conversion from DFAs to REV-DFAs. Thus, almost all problems that concern uniqueness and the size of minimal REV-DFAs are solved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.