Abstract

How can leukemic cells be detected in cryopreserved ovarian tissue? Multicolor flow cytometry (FCM) is useful to evaluate the presence of viable leukemic cells in the ovarian cortex with a high specificity and a robust sensitivity. Storing ovarian tissue is an option to preserve fertility before gonadotoxic radiotherapy or chemotherapy treatments. However, transplantation of cryopreserved ovarian cortex to women cured of leukemia is currently not possible due to the risk of cancer re-seeding. We developed an automated ovarian cortex dissociation technique and we used eight-color FCM to identify leukemic cells with a series of dilutions added to ovarian single cell suspensions obtained from healthy cortex. Healthy ovarian cortex originated from women between 23 and 39 years of age undergoing laparoscopic ovarian drilling for polycystic ovary syndrome. Blood or bone marrow cells were collected in acute lymphoblastic leukemia (ALL) patients at diagnosis. The tissue dissociation technique yield was 1.83 ± 1.49 × 10(6) viable nucleated cells per 100 mg of ovarian cortex. No cell exhibiting a leukemic phenotype was present in the normal ovarian cortex. Added leukemic cells were detected using their leukemia-associated phenotype up to a dilution of 10(-4). When specific gene rearrangements were present, they were detected by real-time quantitative PCR at the same dilution. The ovarian cortex from two leukemia patients was then used, respectively, as positive and negative controls. Making available minimal residual disease (MRD) detection techniques (multicolor FCM, PCR and xenograft), that can be used either alone or together, is essential to add a fail-safe oncological dimension to pre-autograft monitoring. This approach can be performed on fresh ovarian tissue during cryopreservation or on frozen/thawed tissue before reimplantation and it is currently the only available technique in cases of ALL where no molecular markers are identified. This new perspective should lead to studies on ovarian tissue from leukemia patients, for whom the presence of MRD should be established before autograft. The study was supported by the BioMedicine Agency, the Committee of the League against Cancer, the Besançon University Hospital, DGOS/INSERM/INCa and the regional Council of Franche-Comté. There were no conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.