Abstract

It is well-known that random attractors of a random dynamical system are generally not unique. We show that for general pullback attractors and weak attractors, there is always a minimal (in the sense of smallest) random attractor which attracts a given family of (possibly random) sets. We provide an example which shows that this property need not hold for forward attractors. We point out that our concept of a random attractor is very general: The family of sets which are attracted is allowed to be completely arbitrary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.