Abstract
In this paper, we present an algorithmic method for computing a projective resolution of a module over an algebra over a field. If the algebra is finite dimensional, and the module is finitely generated, we have a computational way of obtaining a minimal projective resolution, maps included. This resolution turns out to be a graded resolution if our algebra and module are graded. We apply this resolution to the study of the Ext \operatorname {Ext} -algebra of the algebra; namely, we present a new method for computing Yoneda products using the constructions of the resolutions. We also use our resolution to prove a case of the “no loop” conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.